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We study a class of super-rough growth models whose structure factor satisfies the Family-Vicsek scaling.
We demonstrate that a macroscopic background spontaneously develops in the local surface profile, which
dominates the scaling of the local surface width and the height difference. The shape of the macroscopic
background takes a form of a finite-order polynomial whose order is decided from the value of the global
roughness exponent. Once the macroscopic background is subtracted, the width of the resulting local surface
profile satisfies the Family-Vicsek scaling. We show that this feature is universal to all super-rough growth
models, and we also discuss the difference between the macroscopic background formation and the pattern
formation in other model4.S1063-651X97)50409-0

PACS numbeps): 05.40:+j, 05.70.Ln, 68.35.Fx

Recently, there has been considerable progress in the uaiso that at the later stage, the surface width implied by Eq.
derstanding of the dynamics of growing surfafeg]. Much  (2) is anomalously larger than the FV scaling resiftt,
of the progress is motivated by the crucial observation thasincea> o’ and &(t)>1.
surface roughening exhibits scaling behaviors. For example, In the past few years, there have been many works on the
the growth of the global surface widtia(L,t), when it starts anomalous roughening. Numerical simulations demonstrated
from the flat surface, shows the following behavior. At anthe occurrence of the anomalous roughening in some growth
initial stage, w(L,t) grows as a power law of time models(for example, see Ref§4, 5]). A new scaling ansatz
w(L,t)~t#, where g is called the growth exponent. At a for the anomalous roughening was propoged]. Very re-
later stage, howevew(L,t) saturates to a certain power of cently, Lgpez et al. [8] identified two separate mechanisms
the system sizé, w(L,t)~L¢%, wherea is called the rough- of the anomalous roughening, super-roughening, and intrin-
ness exponent. The crossover to the saturated surface is gaie roughening. In case of the super-rougheniag-Q), the
erned by the lateral correlation lengglit), which scales as structure factorS(k), or the power spectrum, follows the
t'2 for the initial staget<L? and saturates th for the later ~ Family-Vicsek scaling and the anomalous roughening occurs
staget> L% Here the third exponemntis called the dynamic due to the divergence of(k) neark=0. In case of the
exponent, and this scaling behavior is called the Familyintrinsic anomalous roughening, on the other ha®(k) it-
Vicsek (FV) scaling ansatg3]. self scales anomalously.

The presence of the scaling is usually related to the self- Among the two mechanisms, we focus in this paper on
affine structure of a surface, implying the same properties ahe anomalous roughening due to the super-roughening. In
all length scales. In some growth modéisr example, Refs. particular, we study the morphology of the local surface pro-
[4, 5]), however, surface properties exhibit different behav-file generated in the super-rough growth models. Usually, the
iors when they are probed at different length scales. For exsurface profile can be probed from the scaling of the local
ample, one may probe the surface widtfl ,t) within a local  surface width or the height-difference as a function of a

window of sizel (<L), where probing length scale. In super-rough surfaces, however, the
scaling is much less informative, since the relevant local
w2(l ,t)={<(h(xyt)—<h(X,t)>x|)2>xl}, ) roughness exponent’ is always 18] independent of many

details of growth models, the only implication of the univer-
sal value 1 being the divergence 8fk). So to probe the
and( >X| is the spatial average over the local winddvof  surface profile in the super-rough growth models, we take a
sizel and{} the sample average. And one finds different theoretical approach based on the least-square-
fitting method. As a main result of the paper, we find that
28 , the local surface profile forms a macroscopic background
t for t<l that takes the form of a finite order polynomial and ttisit
w2(l,t) £\ 2e—a) , (2)  the magnitude of the short wavelength fluctuations superim-
IZ“(I—) for t>1". posed on the macroscopic background follows the FV scal-
ing. We also show that this property is universal to all super-
rough growth models.
Note that while it follows the FV scaling at the initial stage  One simple way to study the profile is to make a guess on
t<l|?, the scaling behavior at the later stageaitomalous the functional form of the profile, fit the function to the pro-
the window size dependence is described not byglbeal file through the least-square-fitting method, and examine the
roughness exponent, but rather by a new exponent magnitude of the discrepancy. The simplest example of this
a'(<a), which is calledlocal roughness exponent. Note approach is the local surface width since the idea of (Eg.
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is nothing but the least-square fitting of the local surface h(x,1)
profile with a constant functiogh(x,t))x,. Adopting this

view point, it is then interesting to explore other possibilities
of fitting functions, which hopefully produces a smaller dis-
crepancy. Since the origin of the anomalous roughening in
the super-rough growth models is the divergence in the long i(x0)
wavelength components that appear smooth in the local win- ¥
dow, we first take a first-order polynomial inas a fitting
function: hy(x,t)=a;(t)x+ag(t). Here, the -coefficients
a(t) are fixed by minimizing the discrepancy
([h(x,t)—hl(x,t)]z)xI for a given surface height profile
h(x,t).

For illustration, we first use the 41 dimensional uni- !
form diffusion models as examples:

~w(l,H)~18"" (1)

™
N el

X
Jh(x,t) o PTh(xb)
A

+ 7(X,t), 3
ax=m (%) @ FIG. 1. Typical surface profile of a1 dimensional uniform

. ) ) ] o diffusion model withm=2 [Eqg. (3)] at the later stage(t)>1.
where(x,t) is the noise with correlatiofin(x,t) n(x',t )} Notice the formation of a linear macroscopic backgroimx, t)
=D4§(x—x")s(t—t’), andm=1,2,3 ... . For ararbitrary whose large slope leads to the anomalous scaling®¢F,t). Once
m, it can be explicitly verified that the structure factor fol- the packground is subtracted, the resulting local surface width
lows the FV scaling. Also, the precise values of the scalingw,(1,t) is characterized by thglobal roughness exponent and
exponents are knowre=(2m—1)/2, B=(2m—1)/4m, and  satisfies the Family-Vicsek scaling.
z=2m[9]. Notice that fom=2, the uniform diffusion mod- .
els become super-roughv&-1). Then, as demonstrated in definiteness, let us takdé(t) as a small parameter of the
Ref. [8], the models exhibit the anomalous scaling with@nalysis. Then the power reduction implies the substantial
a'=1 form=2. improvement of the fitting, which we interpret as an evi-

The accuracy of the fitting with the first-order polynomial dence of a spontaneous formation ofr&croscopic back-

can be estimated from the ensemble averaged minimal digroundin the surface profile. Here the word “macroscopic”
denotes that the characteristic length scale of the background
crepancy,

is comparable to or larger than the window size~igure 1
5 _ = 2 shows a typical surface profile of the= 2 uniform diffusion
wi(l,t) ={{(h(x,t) =h1(X,t))%)x }, @ model at the later stag&(t)>I, and the formation of the
' . . linear background is cledd.0].
where we callwy(l,1) first-order generalized surface width. = v;qtivated by the success of the first-order polynomial, we
For the linear models Eq3), w,(1,t) can be evaluated ana- o,|qre the idea further and examine the other types of fitting
Iytically |n2 a straightforward way. A;thhe |n.|t|al §tage functions. Specifically, we choose a higher-order polyno-
(M) <I, wi(l,t) scales the same way &s'(l,t), implying g which is a natural extension of the first-order polyno-
that there is no substantial improvement of the fitting frommial one merit of this choice is that polynomials form a
the new choice of the fitting function. This result is under-complete set of basis for functional space. So by examining
standable since the divergenceS{k) does not qualitatively  tne fitting with high-order polynomials, one can examine the
affect the surface profile at the initial stage. At the later staggffect of all types of fitting functions. To estimate the accu-
&(t)>1; however, the results are racy of the fitting with anNth order polynomial, we intro-
duce anNth order generalized surface width(l,t), where
|2 for a<2 (or m=1,2)
2 2a-2) wE(1,)={([h(x,t) = hy(x,1)12)x } (6)
I t ) 1 1 1
wa(l, b |2a($) for a>2 (or m=3). N < N >x'
(5) and the coefficients;(t) of hy(x,t)=3MN ja;(t)x are simi-
larly fixed by the least-square-fitting method for a given re-
Here the reduction in the power of the large fackgt)/I alizationh(x,t). For the linear model Ed3), one can ana-
should be noticed: it has been reduced fromx2@) in lytically verify that wﬁ,(l,t) scales the same way ag(l,t)
w?(l,t) to 0 for m=2 and to 2@—2) for m=3. For the at the initial stage, again finding no improvement, and

|2 for a<N-+1(or m=N+1)

2 o 2(a—N-1)
wi(1,t) |2a<$) for @>N+1(or m=N+2), "
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at the later stage. This scaling result contains very interestingactor s(k,t)z{ﬁ(k,t)ﬁ(—k,t)}. By comparing the defini-
information. First, the accuracy improves substantially as theions, one can obtain the following relation betwe@(x,t)
order N increases tilIN becomes larger tham—1, after andS(k,t) [8]:
which it saturates and does not improve upon the further
increase oN. Recalling the completeness of the polynomial dk
basis, one then realizes that even if other forms of fitting G(X’t):4fk0 2m [1=codkx)]S(k.t), ®)
function were chosen, such as sines and cosines, they would
not improve the accuracy either. In this sense, one can sayhere the lower cutofk, of the integration is decided by the
that the macroscopic background in the uniform diffusionsystem size_ , ko=2a/L. Usually the lower cutoff can be
models takes the form of aXth order polynomial, wheré replaced by 0 and Ed8) leads toG(x,t) satisfying the FV
is the largest integer smaller than Second, the minimal scaling. Fora>1, however, the integration has the infrared
discrepancy of the fitting is always of the orderléf [11],  divergence and the lower cutoff becomes important. In this
and so it is characterized by tlgdobal roughness exponent. case, by taking explicit care of the lower cutoff and from the
One interesting consequence of this result is that once theV scaling ofS(k,t) [for the FV scaling ofS(k,t), see, for
macroscopic background is subtracted, the width of the reexample, Ref[2]], one can obtain fog(t)>x,
sulting local surface profile satisfies the FV scaling. - 1 2 :2(a1)

To understand the underlying physics in the uniform dif- G(x,t)=[x[**u(x/t**) +|x|*¢ (Do (x/EL), (9
fusion models, let us represent the local surface profile in the . . .
following  way: h(x,t) = 2™ La,(t)x + 3 JA(k,t) sinkx where u(y—0)=uqg [ug log(ll) if « is an intege}f, and

, . ; v(y) is an even function of, v(y) =27 way?. In Eq.(9),
iJrrmtEEie(,stt%r?OSkr)g, \évrTergfk:hls Egi;g:?ngzszrﬂ Silgrﬁlfngggl.soigihat the first term is the usual Family-Vicsek contribution and the
9 property zecond is the anomalous contribution coming from the inte-

while_the r_elaxation f_orce tends to suppress the amplitude c_) ration near the lower cutoff. The even form of the scaling
the grlnniulsmdalipart, it does not "f‘ffeCt the polynomial Partsnction v(y) originates from the series expansion of the
F[ZiZo "ai(t)x']=0  for arbitrary —a(t) where pny x dependent factor cosky) in Eg. (8). Notice that
F[h(x,t)]=(—1)""*6*"h/ox*™. This property opens a the anomalous contribution is dominant over the FV contri-
possibility for the anomalous growth of the coefficients pytion for a>1.
a;(t), which makes polynomials special candidates for a fit-  To demonstrate the universality, we show that the result
ting function. And the scaling result (W,%,(l ,t) implies that  in Eq. (7), regarding the scaling (!f/ﬁ,(l 1), comes naturally
the coefficientsa;(t) with i<a (or i<m) indeed become from the form ofG(x,t) in Eq.(9). For simplicity, let us take
anomalously large so that they lead to the formation of theN=1. The generalization to a larger value bf is also
macroscopic background. straightforward and it will be sketched below. The key ele-

Let us compare the formation of the macroscopic backment of the demonstration is to derive a general relation
ground in the uniform diffusion models with pattern forma- betweean(I ,t) andG(x,t). From the definition of/vi(l 1),
tion in other models where the pattern formation is due toone can verify the following linear relation:
symmetry breaking or the coherent superposition of modes L
of different wavelengtj12]. In the uniform diffusion mod- 2 _
els, the symmetry breaking does not occur and the ensemble will,O= 312 J’x|dX1dX2G(Xl—X2,t)
average of;(t) vanishes. Also there is no coherent coupling (10
between different modes since the models are linear. Here,
however, the fluctuations @ (t) in different realizations are Where the center of the local windo¥; is chosen as the
so large that the fluctuations lead to the macroscopic backerigin of the coordinate system. Then by combining Ed)
ground formation for any given realization; that is, the mac-With Eg. (9), one finds
roscopic background formation is due to lafgetuationsin w _
some particular “degrees of freedom.” In this sense, the 2 _ : 2a( f(t))z(a_l_')

. =aor : wW2(1,t) = fu(i+1)vyl2e 2=
macroscopic background formation is completely different ! =0 I
from the pattern formation in its origin.
. . . ; . L 20 ...

For the 1+1 dimensional uniform diffusion models, it is ti(a)upl -, (11)
now demonstrated th&t) a macroscopic background devel-
ops spontaneously in the local surface profile, and the backvhere
ground takes a form of aN-th order polynomial wher#\ is
the largest integer smaller than and that(ii) once the mac- fi(w)= 4(1-p) (12)
roscopic background is subtracted, the resulting local surface 1A Cu+1)(2u+2)(2u+4)’
profile satisfies the FV scaling. Below, we show that these
properties are universal to all super-rough growth models. and the dots represent other terms smaller {8&n Then to

From now on, we restrict the discussion to the later stagéind out the scaling behavior o/f/f(l ,t), one just needs to
since it is trivial to show thalvﬁ(l ,t) satisfies the FV scaling select the leading order term from E41). In power count-
at the initial stage for an arbitrafd. To study the scaling ing of I/&(t), f1(1)vol2£(t)%(*~ 1) appears to be the leading
behavior at the later stage, it is useful to first relate theorder term. However, this term is not the true leading order
height-height correlation functioG(x,t) to the structure term, since the proportionality constan(1) vanishes iden-
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tically. Then by choosing the next leading order term inf, 5(u)=Df(u), and one verifies the universality in higher
power counting, one can show that E), which is a special spatial dimensions. The generalization of the analysis to a
case of Eq(7), is universal. larger value ofN is also straightforward.

The generalization of the analysis to a larger valud&Nof  One important signature of the super-rough growth mod-
can be carried out in a similar way. From the definition ofe|s is the universal value of the local roughness exponent
wi(1,t), one can derive a linear relation betweeR(l,t)  4’=1. For some growth mode[§,14,15, numerical simu-
and G(x,t). By combining this relation with Eq(9), one |ations resulted inx’~1, and so it would be interesting to

finds examine whether the present analysis applies to those growth
= £\ 2(a-1-1) models. One of the most promising candidates is thell
2 22 i | 2a i) dimensional model of driven interfaces in random media, for
wi(l,t) fn(i+ vyl . : o
i=0 | which the functional renormalization group study by
Ff(a@)ugl2at - | (13 Narayan and Fishef16] resulted ina’=1 in the critical
region.
where the dots represent other terms smaller §4n and In this paper, we consider the anomalous roughening in

fa(w) is zero if u is an integer smaller than or equal kb ~ super-rough ¢>1) growth models whose structure factors
[13]. Then by selecting the tru@onvanishingleading order ~ satisfy the Family-Vicsek scaling. We show that these
term from Eq.(13), one can show the universality of E{). growth models share the following universal features. First,
So far, we have demonstrated the universality of the macthe local surface profile is characterized by a formation of a
roscopic background formation only for+ll dimensional macroscopic background, which takes a form of\ih order
systems. However, the universality is not restricted 011  polynomial, whereN is the largest integer smaller than the
dimensional systems. For illustration, here we show the uniglobal exponent.. Second, after subtracting the macroscopic
versality of Eq.(5) for D+ 1 dimensional systems. The gen- background, the width of the resulting local surface profile
eralization of the two key relations Eq$8,10 can be satisfies the Family-Vicsek scaling.
achieved through trivial replacements suchkas-k-x and
X1X,— X1 - X, Where aD-dimensional cube with volumg’ We would like to acknowledge helpful discussions with J.
is chosen as ®-dimensional local window. Then following M. Kim. This work is supported by the Korea Science and
the same procedure, one obtains precisely the same exprésagineering Foundation through the SRC program of SNU-
sion as Eq.(11) except for a replacement of;(u) by  CTP.
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