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Universal macroscopic background formation in surface super-roughening
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We study a class of super-rough growth models whose structure factor satisfies the Family-Vicsek scaling.
We demonstrate that a macroscopic background spontaneously develops in the local surface profile, which
dominates the scaling of the local surface width and the height difference. The shape of the macroscopic
background takes a form of a finite-order polynomial whose order is decided from the value of the global
roughness exponent. Once the macroscopic background is subtracted, the width of the resulting local surface
profile satisfies the Family-Vicsek scaling. We show that this feature is universal to all super-rough growth
models, and we also discuss the difference between the macroscopic background formation and the pattern
formation in other models.@S1063-651X~97!50409-0#

PACS number~s!: 05.40.1j, 05.70.Ln, 68.35.Fx
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Recently, there has been considerable progress in the
derstanding of the dynamics of growing surfaces@1,2#. Much
of the progress is motivated by the crucial observation t
surface roughening exhibits scaling behaviors. For exam
the growth of the global surface widthw(L,t), when it starts
from the flat surface, shows the following behavior. At
initial stage, w(L,t) grows as a power law of time
w(L,t);tb, where b is called the growth exponent. At
later stage, however,w(L,t) saturates to a certain power o
the system sizeL, w(L,t);La, wherea is called the rough-
ness exponent. The crossover to the saturated surface is
erned by the lateral correlation lengthj(t), which scales as
t1/z for the initial staget!Lz and saturates toL for the later
staget@Lz. Here the third exponentz is called the dynamic
exponent, and this scaling behavior is called the Fam
Vicsek ~FV! scaling ansatz@3#.

The presence of the scaling is usually related to the s
affine structure of a surface, implying the same propertie
all length scales. In some growth models~for example, Refs.
@4, 5#!, however, surface properties exhibit different beha
iors when they are probed at different length scales. For
ample, one may probe the surface widthw( l ,t) within a local
window of sizel (!L), where

w2~ l ,t !5$^~h~x,t !2^h~x,t !&Xl
!2&Xl

%, ~1!

and ^ &Xl
is the spatial average over the local windowXl of

size l and $ % the sample average. And one finds

w2~ l ,t !}H t2b for t! l z

l 2aS j~ t !

l D 2~a2a8!

for t@ l z.
~2!

Note that while it follows the FV scaling at the initial stag
t! l z, the scaling behavior at the later stage isanomalous:
the window size dependence is described not by theglobal
roughness exponenta, but rather by a new exponen
a8(,a), which is calledlocal roughness exponent. Not
561063-651X/97/56~3!/2347~4!/$10.00
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also that at the later stage, the surface width implied by
~2! is anomalously larger than the FV scaling resultl 2a,
sincea.a8 andj(t)@ l .

In the past few years, there have been many works on
anomalous roughening. Numerical simulations demonstra
the occurrence of the anomalous roughening in some gro
models~for example, see Refs.@4, 5#!. A new scaling ansatz
for the anomalous roughening was proposed@6,7#. Very re-
cently, López et al. @8# identified two separate mechanism
of the anomalous roughening, super-roughening, and int
sic roughening. In case of the super-roughening (a.1), the
structure factorS(k), or the power spectrum, follows th
Family-Vicsek scaling and the anomalous roughening occ
due to the divergence ofS(k) near k50. In case of the
intrinsic anomalous roughening, on the other hand,S(k) it-
self scales anomalously.

Among the two mechanisms, we focus in this paper
the anomalous roughening due to the super-roughening
particular, we study the morphology of the local surface p
file generated in the super-rough growth models. Usually,
surface profile can be probed from the scaling of the lo
surface width or the height-difference as a function of
probing length scale. In super-rough surfaces, however,
scaling is much less informative, since the relevant lo
roughness exponenta8 is always 1@8# independent of many
details of growth models, the only implication of the unive
sal value 1 being the divergence ofS(k). So to probe the
surface profile in the super-rough growth models, we tak
different theoretical approach based on the least-squ
fitting method. As a main result of the paper, we find that~i!
the local surface profile forms a macroscopic backgrou
that takes the form of a finite order polynomial and that~ii !
the magnitude of the short wavelength fluctuations super
posed on the macroscopic background follows the FV s
ing. We also show that this property is universal to all sup
rough growth models.

One simple way to study the profile is to make a guess
the functional form of the profile, fit the function to the pro
file through the least-square-fitting method, and examine
magnitude of the discrepancy. The simplest example of
approach is the local surface width since the idea of Eq.~1!
R2347 © 1997 The American Physical Society
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is nothing but the least-square fitting of the local surfa
profile with a constant function̂h(x,t)&Xl

. Adopting this
view point, it is then interesting to explore other possibiliti
of fitting functions, which hopefully produces a smaller d
crepancy. Since the origin of the anomalous roughening
the super-rough growth models is the divergence in the l
wavelength components that appear smooth in the local w
dow, we first take a first-order polynomial inx as a fitting
function: h̃1(x,t)5a1(t)x1a0(t). Here, the coefficients
ai(t) are fixed by minimizing the discrepanc
^@h(x,t)2h̃1(x,t)#2&Xl

for a given surface height profile

h(x,t).
For illustration, we first use the 111 dimensional uni-

form diffusion models as examples:

]h~x,t !

]t
5~21!m11

]2mh~x,t !

]x2m 1h~x,t !, ~3!

whereh(x,t) is the noise with correlation$h(x,t)h(x8,t8)%
5Dd(x2x8)d(t2t8), andm51,2,3, . . . . For anarbitrary
m, it can be explicitly verified that the structure factor fo
lows the FV scaling. Also, the precise values of the scal
exponents are known:a5(2m21)/2,b5(2m21)/4m, and
z52m @9#. Notice that form>2, the uniform diffusion mod-
els become super-rough (a.1). Then, as demonstrated
Ref. @8#, the models exhibit the anomalous scaling w
a851 for m>2.

The accuracy of the fitting with the first-order polynomi
can be estimated from the ensemble averaged minimal
crepancy,

w1
2~ l ,t !5$^~h~x,t !2h̃1~x,t !!2&Xl

%, ~4!

where we callw1( l ,t) first-order generalized surface width
For the linear models Eq.~3!, w1( l ,t) can be evaluated ana
lytically in a straightforward way. At the initial stag
j(t)! l , w1

2( l ,t) scales the same way asw2( l ,t), implying
that there is no substantial improvement of the fitting fro
the new choice of the fitting function. This result is unde
standable since the divergence ofS(k) does not qualitatively
affect the surface profile at the initial stage. At the later sta
j(t)@ l ; however, the results are

w1
2~ l ,t !}H l 2a for a,2 ~or m51,2!

l 2aS j~ t !

l D 2~a22!

for a.2 ~or m>3!.

~5!

Here the reduction in the power of the large factorj(t)/ l
should be noticed: it has been reduced from 2(a21) in
w2( l ,t) to 0 for m52 and to 2(a22) for m>3. For the
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definiteness, let us takel /j(t) as a small parameter of th
analysis. Then the power reduction implies the substan
improvement of the fitting, which we interpret as an ev
dence of a spontaneous formation of amacroscopic back-
ground in the surface profile. Here the word ‘‘macroscopic
denotes that the characteristic length scale of the backgro
is comparable to or larger than the window sizel . Figure 1
shows a typical surface profile of them52 uniform diffusion
model at the later stagej(t)@ l , and the formation of the
linear background is clear@10#.

Motivated by the success of the first-order polynomial,
explore the idea further and examine the other types of fitt
functions. Specifically, we choose a higher-order polyn
mial, which is a natural extension of the first-order polyn
mial. One merit of this choice is that polynomials form
complete set of basis for functional space. So by examin
the fitting with high-order polynomials, one can examine t
effect of all types of fitting functions. To estimate the acc
racy of the fitting with anNth order polynomial, we intro-
duce anNth order generalized surface widthwN( l ,t), where

wN
2 ~ l ,t !5$^@h~x,t !2h̃N~x,t !#2&Xl

%, ~6!

and the coefficientsai(t) of h̃N(x,t)5( i 50
N ai(t)x

i are simi-
larly fixed by the least-square-fitting method for a given
alizationh(x,t). For the linear model Eq.~3!, one can ana-
lytically verify that wN

2 ( l ,t) scales the same way asw2( l ,t)
at the initial stage, again finding no improvement, and

FIG. 1. Typical surface profile of a 111 dimensional uniform
diffusion model with m52 @Eq. ~3!# at the later stagej(t)@ l .
Notice the formation of a linear macroscopic backgroundh̃1(x,t)
whose large slope leads to the anomalous scaling ofw2( l ,t). Once
the background is subtracted, the resulting local surface w
w1( l ,t) is characterized by theglobal roughness exponenta and
satisfies the Family-Vicsek scaling.
wN
2 ~ l ,t !}H l 2a for a,N11~or m<N11!

l 2aS j~ t !

l D 2~a2N21!

for a.N11~or m>N12!,
~7!
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at the later stage. This scaling result contains very interes
information. First, the accuracy improves substantially as
order N increases tillN becomes larger thana21, after
which it saturates and does not improve upon the furt
increase ofN. Recalling the completeness of the polynom
basis, one then realizes that even if other forms of fitt
function were chosen, such as sines and cosines, they w
not improve the accuracy either. In this sense, one can
that the macroscopic background in the uniform diffusi
models takes the form of anNth order polynomial, whereN
is the largest integer smaller thana. Second, the minima
discrepancy of the fitting is always of the order ofl 2a @11#,
and so it is characterized by theglobal roughness exponen
One interesting consequence of this result is that once
macroscopic background is subtracted, the width of the
sulting local surface profile satisfies the FV scaling.

To understand the underlying physics in the uniform d
fusion models, let us represent the local surface profile in
following way: h(x,t)5( i 50

2m21ai(t)x
i1(k@A(k,t)sinkx

1B(k,t)coskx], wherekl is an integer multiple of 2p. One
interesting property of the uniform diffusion models is th
while the relaxation force tends to suppress the amplitud
the sinusoidal part, it does not affect the polynomial pa
F@( i 50

2m21ai(t)x
i #50 for arbitrary ai(t) where

F@h(x,t)#5(21)m11]2mh/]x2m. This property opens a
possibility for the anomalous growth of the coefficien
ai(t), which makes polynomials special candidates for a
ting function. And the scaling result ofwN

2 ( l ,t) implies that
the coefficientsai(t) with i ,a ~or i ,m! indeed become
anomalously large so that they lead to the formation of
macroscopic background.

Let us compare the formation of the macroscopic ba
ground in the uniform diffusion models with pattern form
tion in other models where the pattern formation is due
symmetry breaking or the coherent superposition of mo
of different wavelength@12#. In the uniform diffusion mod-
els, the symmetry breaking does not occur and the ensem
average ofai(t) vanishes. Also there is no coherent coupli
between different modes since the models are linear. H
however, the fluctuations ofai(t) in different realizations are
so large that the fluctuations lead to the macroscopic ba
ground formation for any given realization; that is, the ma
roscopic background formation is due to largefluctuationsin
some particular ‘‘degrees of freedom.’’ In this sense,
macroscopic background formation is completely differe
from the pattern formation in its origin.

For the 111 dimensional uniform diffusion models, it i
now demonstrated that~i! a macroscopic background deve
ops spontaneously in the local surface profile, and the ba
ground takes a form of anN-th order polynomial whereN is
the largest integer smaller thana, and that~ii ! once the mac-
roscopic background is subtracted, the resulting local sur
profile satisfies the FV scaling. Below, we show that the
properties are universal to all super-rough growth model

From now on, we restrict the discussion to the later st
since it is trivial to show thatwN

2 ( l ,t) satisfies the FV scaling
at the initial stage for an arbitraryN. To study the scaling
behavior at the later stage, it is useful to first relate
height-height correlation functionG(x,t) to the structure
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factor S(k,t)5$ĥ(k,t)ĥ(2k,t)%. By comparing the defini-
tions, one can obtain the following relation betweenG(x,t)
andS(k,t) @8#:

G~x,t !54E
k0

` dk

2p
@12cos~kx!#S~k,t !, ~8!

where the lower cutoffk0 of the integration is decided by th
system sizeL, k052p/L. Usually the lower cutoff can be
replaced by 0 and Eq.~8! leads toG(x,t) satisfying the FV
scaling. Fora.1, however, the integration has the infrare
divergence and the lower cutoff becomes important. In t
case, by taking explicit care of the lower cutoff and from t
FV scaling ofS(k,t) @for the FV scaling ofS(k,t), see, for
example, Ref.@2##, one can obtain forj(t)@x,

G~x,t !5uxu2au~x/t1/z!1uxu2j2~a21!~ t !v„x/j~ t !…, ~9!

where u(y→0)5u0 @u0 log(1/y) if a is an integer#, and
v(y) is an even function ofy, v(y)5( i 50

` v2i y
2i . In Eq. ~9!,

the first term is the usual Family-Vicsek contribution and t
second is the anomalous contribution coming from the in
gration near the lower cutoff. The even form of the scali
function v(y) originates from the series expansion of t
only x-dependent factor 12cos(kx) in Eq. ~8!. Notice that
the anomalous contribution is dominant over the FV con
bution for a.1.

To demonstrate the universality, we show that the res
in Eq. ~7!, regarding the scaling ofwN

2 ( l ,t), comes naturally
from the form ofG(x,t) in Eq. ~9!. For simplicity, let us take
N51. The generalization to a larger value ofN is also
straightforward and it will be sketched below. The key e
ment of the demonstration is to derive a general relat
betweenw1

2( l ,t) andG(x,t). From the definition ofw1
2( l ,t),

one can verify the following linear relation:

w1
2~ l ,t !5

1

2l 2 E
Xl

dx1dx2G~x12x2 ,t !S 11
12

l 2 x1x2D ,

~10!

where the center of the local windowXl is chosen as the
origin of the coordinate system. Then by combining Eq.~10!
with Eq. ~9!, one finds

w1
2~ l ,t !5(

i 50

`

f 1~ i 11!v2i l
2aS j~ t !

l D 2~a212 i !

1 f 1~a!u0l 2a1••• , ~11!

where

f 1~m!5
4~12m!

~2m11!~2m12!~2m14!
, ~12!

and the dots represent other terms smaller thanl 2a. Then to
find out the scaling behavior ofw1

2( l ,t), one just needs to
select the leading order term from Eq.~11!. In power count-
ing of l /j(t), f 1(1)v0l 2j(t)2(a21) appears to be the leadin
order term. However, this term is not the true leading or
term, since the proportionality constantf 1(1) vanishes iden-
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tically. Then by choosing the next leading order term
power counting, one can show that Eq.~5!, which is a special
case of Eq.~7!, is universal.

The generalization of the analysis to a larger value oN
can be carried out in a similar way. From the definition
wN

2 ( l ,t), one can derive a linear relation betweenwN
2 ( l ,t)

and G(x,t). By combining this relation with Eq.~9!, one
finds

wN
2 ~ l ,t !5(

i 50

`

f N~ i 11!v2i l
2aS j~ t !

l D 2~a212 i !

1 f N~a!u0l 2a1••• , ~13!

where the dots represent other terms smaller thanl 2a, and
f N(m) is zero if m is an integer smaller than or equal toN
@13#. Then by selecting the true~nonvanishing! leading order
term from Eq.~13!, one can show the universality of Eq.~7!.

So far, we have demonstrated the universality of the m
roscopic background formation only for 111 dimensional
systems. However, the universality is not restricted to 111
dimensional systems. For illustration, here we show the u
versality of Eq.~5! for D11 dimensional systems. The ge
eralization of the two key relations Eqs.~8,10! can be
achieved through trivial replacements such askx→k•x and
x1x2→x1•x2 , where aD-dimensional cube with volumel D

is chosen as aD-dimensional local window. Then following
the same procedure, one obtains precisely the same ex
sion as Eq.~11! except for a replacement off 1(m) by
.
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f 1,D(m)5D f 1(m), and one verifies the universality in highe
spatial dimensions. The generalization of the analysis t
larger value ofN is also straightforward.

One important signature of the super-rough growth m
els is the universal value of the local roughness expon
a851. For some growth models@5,14,15#, numerical simu-
lations resulted ina8'1, and so it would be interesting t
examine whether the present analysis applies to those gro
models. One of the most promising candidates is the 111
dimensional model of driven interfaces in random media,
which the functional renormalization group study b
Narayan and Fisher@16# resulted ina851 in the critical
region.

In this paper, we consider the anomalous roughening
super-rough (a.1) growth models whose structure facto
satisfy the Family-Vicsek scaling. We show that the
growth models share the following universal features. Fi
the local surface profile is characterized by a formation o
macroscopic background, which takes a form of anNth order
polynomial, whereN is the largest integer smaller than th
global exponenta. Second, after subtracting the macrosco
background, the width of the resulting local surface profi
satisfies the Family-Vicsek scaling.
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